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Strasheela is a highly generic constraint-based computer aided music com-
position system. A generic music constraint system makes the definition of
a musical constraint satisfation problem (musical CSP, a music theory ex-
pressed by means of constraint programming) more easy than it would be
in a general constraint system. Therefore, musicians are interested in such a
system. At the same time, a generic music constraint system allows to define
and solve a large set of musical constraint satisfaction problems. This text
motivates such a system and briefly outlines the design of Strasheela.

1 Constraint-Based Computer Aided Composition

Computational models of composition have long attracted musicians and computer
scientists alike. Composers like to explore new compositional approaches in order to
develop a distinct personal musical language. Music theorists can evaluate an hypoth-
esis by means of a computational model. For computer scientists, modelling music is
challenging because the complexity inherent in music calls for the most advanced com-
puter science concepts.

Notably rule-based approaches have alway stimulated interest.1 For centuries, compo-
sitional rules were an established device for expressing compositional knowledge (for
example in music education). Many musicians thus feel comfortable with a computa-
tional model based on the notion of rules. For example, rule-based approaches attracted
much attention among composers, because by defining rules composers can formalise
virtually any explicitly available compositional knowledge as a task which the computer
can solve automatically.

1In this text, the term ‘rule’ (and ‘rule-based’) primarily denotes the musical concept of a compositional
rule. In particular, this term does not implicitly refer to any specific programming technique (e.g.
the term does not implicitly refer to a Prolog rule [Bratko, 2001] or a condition-action rule [Russell
and Norvig, 2002]). Instead, the text explains how the musical concept is realised as a programming
concept in different systems.
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Constraint programming has proven a particularly successful programming paradigm
to realise ruled-based systems. Many compositional tasks have been addressed by con-
straint programming. Besides tasks inspired by traditional music theory such as the gen-
eration of harmonic progressions [Pachet and Roy, 2001] or counterpoint [Schottstaedt,
1989; Laurson, 1996], examples include purely rhythmical tasks [Sandred, 2003], Ligeti-
like textures [Laurson and Kuuskankare, 2001], the modelling of non-European music
[Chemillier and Truchet, 2001], or instrumentation [Laurson and Kuuskankare, 2001].

The attraction of constraint programming is easily explained. Constraint programming
allows to model complex problems a simple way. A problem is stated by a set of variables
(unknowns) and constraints (relations) between these variables. For example, a com-
positional task is stated by (i) a music representation in which some musical aspects
are unknown – and therefore represented by variables – and (ii) compositional rules
which impose constraints on these variables. For instance, a chord can be expressed by
an event list and the chord pitches can be variables. Some harmonic rules may spec-
ify how the chord pitches are related to each other. In the terminology of constraint
programming, the modelled problem or task is referred to as a constraint satisfaction
problem (CSP).

In a solution to a CSP, every variable has a value which is consistent with all its
constraints. For example, the solution of a musical CSP is a fully determined music
representation consistent with all constraints expressed by the rules. Existing constraint
programming systems (abridged: constraint systems) can efficiently solve a CSP – a fact
which greatly contributed to the popularity of constraint programming.

A musical CSP can always be defined ‘from scratch’ in a general constraint system. For
instance, such a CSP can be defined in a regular programming language with support
for constraint programming such as the Prolog based systems ECLiPSe [Cheadle et al.,
2003] or SICTus Prolog [SICS]. However, subject-specific CSPs share a considerable
amount of subject-specific knowledge: all musical CSPs require modelling of musical
knowledge. For instance, concepts such as note, pitch, or voice are required in a large
number of musical CSPs. Whenever a musical CSP is defined ‘from scratch’, all this
knowledge must be modelled anew. What’s more, any subject-specific optimisation of
the search process must also be carried out again (if the chosen constraint system
supports such optimisations at all).

Therefore, a number of generic music constraint systems have been proposed. A generic
music constraint system predefines general musical knowledge and building-blocks shared
by many musical CSPs and that way highly simplifies the definition of such problems.
For example, such a system may provide a specific music representation, templates to
simplify the definition of compositional rules, or mechanisms to conveniently control
how a rule is applied to the score. Particular important systems are PWConstraints
[Laurson, 1996], and Situation [Rueda et al., 1998; Bonnet and Rueda, 1999]. A pio-
neering system is Carla [Courtot, 1990]. Further examples include the aggregation of
the music representation MusES with the constraint constraint system BackTalk [Pa-
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chet and Roy, 1995], OMRC [Sandred, 2000, 2003]2, Arno [Anders, 2000], OMBacktrack
[Truchet, Truchet], and OMClouds [Truchet et al., 2001, 2003]. Already the number of
existing systems demonstrates the high interest in music constraint programming.

The availability of generic music constraint systems makes music constraint program-
ming accessible for a much larger user community. Often, these systems are explicitly
tailored for users without any technical background who want to focus on formalising
and solving the specific musical tasks they are interested in. A composer can apply
such a system as an assistant in the composition process, a music theorist can use it
as a testbed to evaluate a music theory, and a teacher can demonstrate the effect of
different compositional rules to students.

The constraint programming paradigm is well suited to the needs of computer aided
composition. Composers often prefer a way of working which is situated somewhere in
the middle between composing ‘by hand’ and formalising the composition process such
that it can be delegated to the computer. Constraint programming supports this way
of working very well. For example, the composer can determine some aspects of the
music (e.g. certain pitches) by hand and constrain other aspects by rules. Alternatively,
the composer may specify the high-level structure (e.g. the formal structure) manually
and let the computer fill in the details. Furthermore, composers usually do not first
fully formalise certain aspects of the composition process before they start actually
composing. Instead, the formalisation is often an integral aspect of the composition
process itself. A compositional task defined by means of constraint programming can be
shaped in a highly flexible way during the composition process by the adding, removing
and changing of individual rules.

A number of well-established composers already made extensive use of constraint pro-
gramming. These include Antoine Bonnet (e.g. for Épitaphe for 8 brass instruments,
2 pianos, orchestra and electro-acoustics, 1992–1994, using Situation [Bresson et al.,
2005]), Magnus Lindberg (Engine for chamber orchestra, 1996, using PWConstraints
[Rueda et al., 1998]), Georges Bloch (Palm Sax for seven saxophones, using Situation
[Rueda et al., 1998]), Örjan Sandred (Kalejdoskop for clarinet, viola and piano, 1999,
using OMRC, [Sandred, 2003]), Jacopo Baboni Schilingi (Concubia nocte, in memoria
di Luciano Berio for soprano and live computer, 2003, using OMCS)3, and Johannes
Kretz (second horizon for piano and orchestra, 2002, using both OMRC and OMCS
[Kretz, 2003]).

2OMRC is defined on top of OMCS, which in turn is a port of the PWConstraints subsystem PMC
from its host composition system PatchWork [Laurson, 1996] to the descendant OpenMusic [Assayag
et al., 1999].

3Personal communication at PRISMA (Pedagogia e Ricerca sui Sistemi Musicali Assistiti) meeting,
January 2004 at Centro Tempo Reale in Florence
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2 Wanted: A Generic Music Constraint System

A generic music constraint system makes the definition of musical CSPs more easy than
it would be in a general constraint system. Therefore, musicians are interested in such
a system.

At the same time, a generic music constraint system should not restrict its user to
specific CSP classes. For instance, composers usually prefer to make compositional
decisions themselves without being restricted by some tool such as a composition system
what they can express musically. The user of an ideal generic music constraint system
(in the sense of a most generic system) can formalise any music theory conceivable
which can be stated by a set of rules. The system will create music which complies this
theory.

Such an ideal system allows to represent arbitrary aspects of the music by variables
which can be undetermined and constrained in the problem definition. Example aspects
which can be expressed by variables in such a system include the rhythmical structure
of the music, its texture (e.g. the number of notes at any time), the pitch structure,
instrumentation, or sound synthesis details (e.g. envelopes for various parameters). In
an extreme case, the set of solutions for a single CSP contains any conceivable score.

To allow for arbitrary musical CSPs, an ideal system provides access to arbitrary mu-
sical information required for the definition and application of compositional rules. For
example, traditional counterpoint rules require much information which can only be
deduced from the information explicitly represented in the representation traditionally
used for contrapuntal composition (i.e. common music notation). For instance, a com-
mon contrapuntual rule permits dissonant note pitches in situations where a number
of conditions is met which involve various musical aspects: a note may be dissonant
in case it is a passing note on an easy beat and below a certain duration. This rule
thus requires information on the harmonic aspect deduced from the pitches of simulta-
neous notes (whether a certain note is dissonant), information on the melodic aspect
deduced from the pitches of notes in the same voice (whether this note is a passing
note), information on the metric aspect deduced from the position of the note in a
measure (whether this note is on an easy beat), and rhythmical information (the note’s
duration).

Existing generic music constraint systems, however, are designed to cover specific ranges
of musical CSPs. These systems support the formalisation of certain music theory cases
very well, but other theories are hard or even impossible to define. For example, OMRC
is designed solely for solving rhythmical CSPs, and Situation is best suited for harmonic
CSPs. PWConstraints’s subsystem score-PMC is designed to solve polyphonic CSPs,
but score-PMC requires a fully determined rhythmical structure in the problem defini-
tion (i.e. only note pitches can be constrained).

Existing systems are programming systems and indeed allow a user to express a consid-
erable number of musical CSPs: the user expresses a compositional task in the program-
ming language used by the system. For example, most systems allow the user to freely
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define a compositional rule as a modular subprogram which makes use of arbitrarily
complex expressions.

Still, only certain aspects of a musical CSP can be programmed. Other aspects can
not be changed or the system only offers a limited set of selectable options. For ex-
ample, the music representations of many existing systems predefine common musical
concepts such as notes, pitches and durations which greatly simplifies the definition of
many musical CSPs. However, the user has only limited influence on the form of this
representation and in effect the representation is only well suited for a limited set of
problems.

In particular, the representations of existing systems limit what explicit score informa-
tion can be stored and what derived information can be accessed. For example, many
systems provide a sequential music representation and primarily support deriving in-
formation from sets of score object which are positionally related (e.g. allow to access
neighbouring notes or chords in a sequence). Access to other derived information (e.g.
whether a note is on an easy beat, or whether a note is dissonant with respect to the
chord expressed by its surrounding notes in a polyphonic texture) is restricted – which
clearly affects the set of CSPs which can be defined in these systems.

In addition, the search strategy of existing systems is usually optimised for specific
classes of musical CSPs. In effect, systems sometimes even purposefully restrict their
users to CSPs which they can solve efficiently. For instance, score-PMC does not allow
to constrain the temporal structure of music, because a determined temporal structure
is required by the polyphonic music search approach of score-PMC to compute an
efficient static search order [Laurson, 1996]. Similarily, the search strategy of Situation
(which performs a consistency enforcing technique to distinctly reduce the search space)
is optimised for its specific music representation format [Rueda et al., 1998].

The present research proposes a highly generic music constraint system. This system
allows to define and solve musical CSPs which were virtually impossible in previous
systems. At the same time, this system performs reasonably efficient – even at problems
which were hard to solve in previous systems due to their computational complexity
(e.g. polyphonic CSPs in which both the rhythmical structure and the pitch structure
is constrained). The design of the system is outlined in the subsequent Sec. 3.

A Side Note: Relation to Learning-Based Approaches

Computational models of music composition also often apply an analysis or learning-
based approach instead of a rule-based approach. For example, the work of Cope [1991,
1996, 2000] gained particular interest, also because of the musical quality of his results.

Yet, such an approach is best suited to model an existing style of music for which a
corpus of examples is available. Composers, however, are usually less interested in style
replication but aim to develop their own distinct musical language. The development of
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a tool for composers was the original motivation of the present research, which therefore
prefers a rule-based approach.

When comparing a rule-based approach with an analysis or learning-based approach,
the former expresses explicit musical knowledge (e.g. statements in first-order logic)
whereas the musical knowledge for the latter approach is often implicit (e.g. as weights
in an artificial neuronal network). However, a learning-based approach can also lead
to explicit musical knowledge. For example, [Morales and Morales, 1995] propose a
system which automatically creates rules in first-order logic (horn clauses) given a mu-
sical example and rule templates. The textbook by Mitchell [1997] introduces learning
techniques including the learning of rules.

Rules won by learning can be used in a rule-based system like handwritten rules. Con-
sequently, a generic rule-based system can also be of interest for the community using
an analysis or learning-based approach to model music composition.

3 The Approach Taken

The present research proposes to make music constraint systems more generic by mak-
ing them more progammable. This proposal is exemplified in the design of the generic
music constraint system Strasheela.4 When comparing Strasheela with previous sys-
tems, three important aspects in particular are made (more) programmable: the music
representation, the rule application to the score, and the search strategy.

Strasheela’s music representation aims to conveniently provide any information required
to express musical CSPs. To this end, the representation is highly extendable. Repre-
sentation building blocks required for many CSPs are ready-made, but Strasheela ad-
ditionally predefines building blocks which assist the user to extend the representation
according needs.

Strasheela defines a novel music representation in the spirit of CHARM [Harris et al.,
1991]. Two principles have been adopted from CHARM. Like CHARM, Strasheela’s
representation is based on the notion of data abstraction [Abelson et al., 1985] and it
allows for user-controlled hierarchic nesting of score objects.

Strasheela’s representation complements these principles by other principles learned
from the music representation literature, for example, selectable score parameter (music

4Strasheela is also the name of an amicable and stubby scarecrow in the children’s novel The Wizard
of the Emerald City by Alexander Volkov [Wolkow, 1939] in which the Russian author retells The
Wonderful Wizard of Oz by Baum [1900]. The latter inspired the name for the programming lan-
guage Oz [van Roy and Haridi, 2004], which forms the foundation for the prototype of the Strasheela
composition system.

The scarecrow’s brain consists only in bran, pins and needles. Nevertheless, he is a brilliant logician
and loves to multiply four figure numbers at night. Little is yet known about his interest in music,
but Strasheela is reported to sometimes dance and sing with joy.
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magnitude) representations [Pope, 1992] (e.g. a pitch can be represented by a keynum-
ber, cent or frequency value), bidirectional links between score objects to facilitate free
traversing in the score hierarchy [Laurson, 1996], temporal containers which organise
their elements sequentially or simultaneously in time [Dannenberg, 1989], organisation
of musical data types in an user-extendable class hierarchy [Pope, 1991; Desain and
Honing, 1997], and a highly generic data abstraction interface realised by higher-order
functions [Desain, 1990].

It is essential for a generic music constraint system that the user freely controls which
variables in the music representation are constrained by which compositional rule. Un-
like many previous systems, Strasheela fully decouples the definition and application of
a rule to make the rule application freely programmable.

Strasheela proposes to encapsulate compositional rules in functions (actually proce-
duces) as first-class values [Abelson et al., 1985]. This approach allows to define rule
application mechanisms as higher-order functions expecting rules (i.e. functions) as
arguments. A number of rule application functions suited for many CSPs have been
defined, which either reproduce rule application mechanisms of existing systems or con-
stitute convenient novel application mechanisms. The user can easily define further such
rule application functions according needs.

Finally, a constraint system must be reasonable efficient to be useful in praxis. It makes
a big difference whether a CSP takes seconds or hours to solve. Strasheela is founded on
a constraint programming model based on the notion of computation spaces [Schulte,
2002]. This model makes the search process itself programmable at a high-level. The
programmable constraint model allows the user, for example, to optimise the search pro-
cess for CSPs with a particular structure (e.g. harmonic CSPs or polyphonic CSPs) by
defining what decisions are made during search (the distribution strategy, the branch-
ing heuristics). For instance, the user can control in which order variables are visited in
the search process – depending on the information available at the time of the decision
(dynamic variable ordering). These decisions have immense influence on the size of the
search space, but previous systems did not allow the user to customise them. These
optimisations are independent of the actual problem definition, which allows to easily
test a CSP with different search strategies or to reuse proven strategies.

A number of novel score distribution strategies have been defined for Strasheela which
are suitable for a large range of musical CSPs. In particular, Strasheela provides a score
distribution strategy which allows to efficiently solve polyphonic CSPs in which both
the rhythmical structure as well as other parameters (e.g. pitches) are unknown and
constrained in the problem definition [Anders, 2002]. Previous systems discouraged or
even disabled the definition of such problems for efficiency reasons.
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